# DIE ENTWICKLUNG EINES NEUEN PHOTOCHROMEN STRUKTUR-PRINZIPS BASIEREND AUF DER REVERSIBLEN PHOTO-OXIDATION

R. SCHMIDT, W. DREWS und H.-D. BRAUER

Institut für Physikalische und Theoretische Chemie, Robert-Mayer-Strasse 11, D-6000 Frankfurt am Main 1 (B.R.D.)

(Eingegangen am 12. Januar 1981; in revidierter Form am 14. November 1981)

## Zusammenfassung

Die durch Photo-oxidation entstehenden Endoperoxide (POs) aromatischer Kohlenwasserstoffe (KWs) können thermisch aber auch photochemisch mit der Quantenausbeute  $Q_1$  wieder in die Edukte KW und  $O_2$ gespalten werden. Beide Reaktionen konkurrieren mit den thermisch oder photochemisch induzierten Umlagerungsreaktionen der Endoperoxide, die mit den Ausbeuten  $A_{dec}$  beziehungsweise  $Q_{dec}$  erfolgen. Das Verhältnis  $Q_1/Q_{dec}$  bestimmt die Reversibilität der potentiell photochromen Systeme

$$PO \xrightarrow[h\nu_2]{h\nu_2} KW + O_2$$

Es kann eine enge Korrelation zwischen  $A_{dec}$  und  $Q_{dec}$  nachgewiesen werden. Weiterhin wird ein Zusammenhang zwischen Struktur und Grösse von  $A_{dec}$ beziehungsweise  $Q_{dec}$  für bestimmte Endoperoxide gefunden. Basierend auf diesen Erkenntnissen und auf Literaturdaten wird ein Konzept für die Struktur hochreversibler photochromer Systeme vorgeschlagen.

Zur Prüfung des Konzepts wurden zwei neue Kohlenwasserstoffe und deren Endoperoxide hergestellt. Eine Untersuchung der photochromen Eigenschaften der beiden neuen Systeme bestätigt das entwickelte Konzept.

## Summary

Endoperoxides (POs) of aromatic hydrocarbons (KWs) produced by photo-oxidation may be split thermally as well as photochemically with the quantum yield  $Q_1$  to give the products KW and  $O_2$ . Both reactions compete with the thermally or photochemically induced rearrangements of the endoperoxides, which occur with the yields  $A_{dec}$  and  $Q_{dec}$  respectively. The ratio  $Q_1/Q_{dec}$  determines the degree of reversibility of the potential photochromic systems

$$PO \xrightarrow[h\nu_1/\Delta]{} KW + O_2$$

A close correlation between  $A_{dec}$  and  $Q_{dec}$  can be demonstrated. Furthermore a relationship is found between the structure and the values of  $A_{dec}$ and  $Q_{dec}$  respectively of certain endoperoxides. On the basis of these results and data from the literature a concept for the structure of highly reversible photochromic systems is proposed.

Two new hydrocarbons and their corresponding endoperoxides were synthesized to test this concept. An examination of the photochromic properties of both new systems confirms the developed concept.

## 1. Einleitung

Photo-oxidation führt bei einer grossen Zahl aromatischer Kohlenwasserstoffe (KWs) zur Bildung transannularer Endoperoxide (POs). Die thermische Stabilität dieser Verbindungen ist sehr unterschiedlich. Bei ihrem Zerfall können Ausgangskohlenwasserstoff und O<sub>2</sub> aber auch in Konkurrenz Umlagerungs- und Zersetzungsprodukte entstehen. Als besonders stabil haben sich die Endoperoxide des substituierten Anthracens beziehungsweise Tetracens erwiesen [1 - 3].

Endoperoxide sind auch photochemisch labil. Bei kurzwelliger Bestrahlung stehen ihnen zwei verschiedene Reaktionskanäle zur Verfügung. Der eine, der zum Teil über mehrere Stufen zur Entstehung von Umlagerungsund Zersetzungsprodukten führt, ist schon länger bekannt [4]. Dagegen wurde erst in jüngster Zeit an einigen Endoperoxiden die konkurrierende Photospaltung in Ausgangskohlenwasserstoff und O<sub>2</sub> beobachtet [5 - 11].

Da einerseits Endoperoxide aus Kohlenwasserstoff und  $O_2$  photochemisch gebildet werden und andererseits eine Spaltung von Endoperoxid in Kohlenwasserstoff und  $O_2$  durch Bestrahlung möglich ist, können die Systeme

$$PO \xrightarrow[h\nu_1/\Delta]{} KW + O_2$$

als potentiell photochrom angesehen werden [12].

Ob es sich bei einem solchen System um ein hochreversibles photochromes System handelt oder nicht, hängt im Einzelfall vor allem von der Konkurrenz von Spaltungsreaktion (reversibel) zu Umlagerungs- und Zersetzungsreaktion (irreversibel) bei der Photolyse des Endoperoxids ab. Denn im allgemeinen verläuft die Photo-oxidation quantitativ ohne Konkurrenz von Nebenreaktionen.

Die Quantenausbeuten der Spaltung  $Q_1$  sowie die der Umlagerungs- und Zersetzungsreaktionen  $Q_{dec}$  sind bisher nur für die Endoperoxide (1) - (3) des Heterocoerdianthrons (HCD) ( $\equiv$  Dibenzo[aj]perylen-8,16-dion), des 9,10-Diphenylanthracens (DPA) und des Rubrens (RUB) ermittelt worden.



#### TABELLE 1

Quantenausbeuten  $Q_1$  der Spaltung und  $Q_{dec}$  der Zersetzung einiger Endoperoxide

| Verbindung | $Q_1$                       | Q <sub>dec</sub>             | $Q_1/Q_{\rm dec}$ | Literatur |  |
|------------|-----------------------------|------------------------------|-------------------|-----------|--|
| (1)        | 0,26 <sup>a</sup> (Toluol)  | 0,0045 <sup>a</sup> (Toluol) | 60                | [8]       |  |
| (2)        | 0,28 <sup>b</sup> (Heptan)  | 0,08° (Toluol)               | 4                 | [10]      |  |
| (3)        | 0,013 <sup>a</sup> (Toluol) | 0,20 <sup>a</sup> (Xylol)    | 0,07              | [11]      |  |

 $^{a}\lambda_{irr} = 313 \text{ nm}.$ 

 $^{b}\lambda_{irr} = 294$  nm.

 $^{c}\lambda_{irr} = 330 \text{ nm}.$ 

Wie die Tabelle 1 zeigt, variieren die Werte für  $Q_1$  und  $Q_{dec}$  beträchtlich.

Das Verhältnis  $Q_1/Q_{dec}$  bestimmt, ob ein System PO  $\Rightarrow$  KW + O<sub>2</sub> ein hochreversibles photochromes System ist oder nicht. Dieses Verhältnis ist mit etwa 60 für das System (1)  $\Rightarrow$  HCD + O<sub>2</sub> am grössten. Nach einer Abschätzung, die in Lit. 8 näher begründet wird, bedeutet dieser Wert, dass der Zyklus Photospaltung  $\Rightarrow$  Photo-oxidation in Lösung etwa tausendmal reversibel durchfahren werden kann, bis sich die Konzentration an (1) durch irreversibele Nebenreaktionen auf 1/e der Ausgangskonzentration erniedrigt hat. Dabei ist ein jeweiliger Umsatz von 5% bei der Photospaltung des PO zugrunde gelegt. Damit ist dieses System in Bezug auf die Reversibilität den hochreversiblen Spiropyranen durchaus ebenbürtig [12].

Das System  $(2) \neq DPA + O_2$  kann mit etwas weniger als 100 reversiblen Zyklen unter analogen Bedingungen noch als ein gut reversibles System bezeichnet werden. Dagegen ist das System, bei dem RUB die farbige Komponente bildet, praktisch nicht mehr reversibel.

Es stellt sich die Frage, ob die enorme Variation der Werte für  $Q_1/Q_{dec}$ unter den Verbindungen (1) - (3) zufällig ist oder ob es bestimmte Strukturmerkmale gibt, die ein System PO  $\approx$  KW + O<sub>2</sub> aufweisen muss, damit es hochreversible photochrome Eigenschaften besitzt. Bei Kenntnis eines Zusammenhangs zwischen Struktur und  $Q_1$  oder  $Q_{dec}$  wäre es nämlich möglich, gezielt weitere photochrome Systeme hoher Qualität darzustellen. Das Ziel der vorliegenden Arbeit ist es, ausgehend von dem bisher bekannten experimentellen Material, nach solchen Strukturmerkmalen zu suchen.

## 2. Experimentelles

Benzo[1,2,3-kl;4,5,6-k'l']dixanthen (BDX), Anthra[1,9-bc;4,10b'c']dichromen (ADC) sowie deren Endoperoxide wurden erstmals hergestellt. Der Syntheseweg von BDX und ADC folgte einer analogen Vorschrift von Clar *et al.* [13].

## 2.1. Benzo [1,2,3-kl; 4,5,6-k'l'] dixanthen

27,6 g 1,5-Dichloranthrachinon (Hoechst AG.) werden mit 30 g Kaliumphenolat und einer Spatelspitze Kupferpulver gemischt und in 40 ml DMF zwei Stunden am Rückfluss gekocht. Die heisse Lösung wird in verdünnte wässrige NaOH gegossen. Nach dem Filtrieren und Trocknen extrahiert man den Rückstand im Soxhlet mit Benzol. Bei Zugabe von Hexan fällt 1,5-Diphenoxyanthrachinon in feinen gelben Nadeln aus. Vor der Weiterverarbeitung wird die Verbindung aus Ethanol umkristallisiert.

2,5 g 1,5-Diphenoxyanthrachinon gemischt mit 35 g AlCl<sub>3</sub>, 7 g NaCl und 4 g Hydrochinon werden für 10 min auf 180 °C erhitzt. Anschliessend lässt man auf 145 °C abkühlen und rührt weitere 15 min. Die Schmelze wird vorsichtig in verdünnte HCl gegossen, der Niederschlag abfiltriert und zweimal mit warmer alkalischer Natriumdithionitlösung extrahiert, um nicht umgesetztes Chinon abzutrennen. Der Rückstand wird mit Wasser, anschliessend mit Methanol gewaschen und im Soxhlet mit Benzol im Dunkeln extrahiert. Das nach Verdampfen des Lösungsmittels erhaltene rote Rohprodukt wird durch anschliessende Extraktion mit Hexan unter Lichtausschluss gereinigt. Hierbei kristallisiert BDX in langen, grün glänzenden Nadeln, die im Auflicht braun, im durchscheinenden Licht rot gefärbt sind. In Tabelle 2 sind einige Eigenschaften und spektroskopische Daten des BDX aufgeführt.

## **TABELLE 2**

Analyse und spektroskopische Daten des Benzo[1,2,3,-kl;4,5,6-k'l']dixanthen

| 250 °C, unkorrigiert |                                         |                                                                           |                                                                                             |                                                                                                      |                                                                                                               |
|----------------------|-----------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 87,1% C, 3,9% H      |                                         |                                                                           |                                                                                             |                                                                                                      |                                                                                                               |
| 86,4% C, 4,0% H      |                                         |                                                                           |                                                                                             |                                                                                                      |                                                                                                               |
|                      |                                         |                                                                           |                                                                                             |                                                                                                      |                                                                                                               |
| 541                  | 505                                     | 412                                                                       | 392                                                                                         | 345                                                                                                  | 288                                                                                                           |
| 4,29                 | 4,19                                    | 3,77                                                                      | 3,43                                                                                        | 3,34                                                                                                 | 4,50                                                                                                          |
|                      | 250 °C<br>87,1%<br>86,4%<br>541<br>4,29 | 250 °C, unkorri<br>87,1% C, 3,9%<br>86,4% C, 4,0%<br>541 505<br>4,29 4,19 | 250 °C, unkorrigiert<br>87,1% C, 3,9% H<br>86,4% C, 4,0% H<br>541 505 412<br>4,29 4,19 3,77 | 250 °C, unkorrigiert<br>87,1% C, 3,9% H<br>86,4% C, 4,0% H<br>541 505 412 392<br>4,29 4,19 3,77 3,43 | 250 °C, unkorrigiert<br>87,1% C, 3,9% H<br>86,4% C, 4,0% H<br>541 505 412 392 345<br>4,29 4,19 3,77 3,43 3,34 |

## 2.2. Anthra [1,9-bc; 4,10-b'c'] dichromen

Die Darstellung von ADC erfolgt analog der Synthese von BDX. Umsetzung von 1,4-Dichloranthrachinon (Hoechst AG.) mit Kaliumphenolat ergibt 1,4-Diphenoxyanthrachinon, das in einer AlCl<sub>3</sub>-NaCl-Hydrochinon-Schmelze zu ADC cyclisiert. Die Reinigung geschieht durch Säulenchromatographie über Silicagel (Benzol:CHCl<sub>3</sub>, 3:2) unter Lichtausschluss. ADC kristallisiert beim Versetzen einer benzolischen Lösung mit Hexan in glänzenden, violetten Nadeln (Tabelle 3).

#### TABELLE 3

Analyse und spektroskopische Daten des Anthra[1,9-bc; 4,10-b'c']dichromen

| Fusionspunkt                 | 201 °C, | 201 °C, unkorrigiert |      |      |      |
|------------------------------|---------|----------------------|------|------|------|
| Analyse, berechnet           | 87,1%   | 87,1% C, 3,9% H      |      |      |      |
| Analyse, gefunden            | 87,3% ( | 87,3% C, 4,1% H      |      |      |      |
| Spektroskopische Daten (Tolu | ol)     |                      |      |      |      |
| $\lambda_{max}$ (nm)         | 563     | 533                  | 417  | 395  | 290  |
| $\log \epsilon$              | 4,10    | 4,12                 | 3,79 | 3,52 | 4,58 |
|                              |         |                      |      |      |      |

Die Endoperoxide beider Kohlenwasserstoffe werden durch Photooxidation in  $CS_2$  erhalten. 0,5% Lösungen in  $CS_2$  werden im Sonnenlicht bis zur Entfärbung gerührt. Anschliessend wird im abgedunkelten Raum bei Zimmertemperatur das Lösungsmittel abgezogen und das Rohprodukt durch Säulenchromatographie über Silicagel (Benzol:CHCl<sub>3</sub>, 3:2) gereinigt. Beim Versetzen von benzolischen Lösungen mit Hexan fallen die Endoperoxide als feine weisse Kristalle aus (Tabelle 4).

#### TABELLE 4

Analyse und spektroskopische Daten der Benzo[1,2,3,-kl;4,5,6-k'l'] dixanthen Endoperoxid und Anthra[1,9-bc;4,10-b'c'] dichromen Endoperoxid

|                                 | BDXPO           | ADCPO           |
|---------------------------------|-----------------|-----------------|
| Analyse, berechnet              | 80,0% C, 3,6% H | 80,0% C, 3,6% H |
| Analyse, gefunden               | 79,7% C, 3,7% H | 80,1% C, 3,7% H |
| Spektroskopische Daten (Toluol) |                 |                 |
| $\lambda_{max}$ (nm)            | 307             | 323             |
| log e                           | 3,97            | 3,90            |

Die spektralphotometrischen Messungen wurden an einem PE 555 Spektrometer der Firma Perkin-Elmer durchgeführt. Zur Ermittlung der Quantenausbeuten wurde eine bereits früher ausführlich beschriebene Apparatur verwendet [14]. Als Lösungsmittel wurden Toluol für die Spektroskopie und m-Xylol von Merck benutzt.

## 3. Ergebnisse und Diskussion

## 3.1. Entwicklung eines Konzepts für hochreversible Systeme

In welcher Weise die Quantenausbeute  $Q_1$  der Spaltung von Endoperoxiden in Ausgangskohlenwasserstoff und  $O_2$  von der Struktur der Endoperoxide abhängt, lässt sich aufgrund der wenigen bisher durchgeführten quantitativen Untersuchungen noch nicht sagen. Für die Spaltung des Endoperoxids (1) in HCD und O<sub>2</sub> konnte gezeigt werden, dass als einziger Konkurrenzprozess zur adiabatischen Spaltung, die aus dem S<sub>2</sub>-Zustand erfolgt, nur internal conversion (IC) in den S<sub>1</sub>-Zustand in Frage kommt [9]. Auch die Spaltung der übrigen bisher quantitativ untersuchten Endoperoxide erfolgt aus einem höheren Singulettzustand [10, 11]. Ob aber IC in den S<sub>1</sub>-Zustand auch in diesen Fällen die einzige Konkurrenz zur Photospaltung ist, ist bisher nicht geklärt.

Irreversible Nebenreaktionen werden bei Einstrahlung in die S<sub>1</sub>-Banden von Endoperoxiden beobachtet. Der Mechanismus dieser Umlagerungs- und Zersetzungsreaktionen wurde nicht nur für die Photolyse, sondern auch für die Thermolyse bereits weitgehend erforscht [5, 15]. Daher erscheint es zunächst erfolgversprechender nach einem Zusammenhang zwischen  $Q_{dec}$ und der Struktur des Endoperoxids zu suchen.

In einem umfassenden Übersichtsartikel von Gollnick und Schenck sind Daten über Endoperoxide von mehr als 150 aromatischen Kohlenwasserstoffen zusammengefasst [3]. Es zeigt sich, dass die meisten Endoperoxide beim Erhitzen zumindest teilweise wieder in Kohlenwasserstoff und  $O_2$ zerfallen. Dabei variiert die Ausbeute an  $O_2$  und Kohlenwasserstoff beträchtlich. Nur bei den Endoperoxiden des HCD und der 9,10-diarylsubstituierten Anthracenderivate sowie zweier weiterer strukturähnlicher Anthracenderivate werden Ausbeuten von über 90% gefunden.

Die Endoperoxide (1) und (2) verhalten sich also nicht nur in ihren photochemischen, sondern auch in ihren thermischen Reaktionen sehr ähnlich. Dies überrascht, wenn man die Ausgangskohlenwasserstoffe HCD und DPA vergleicht, denn während DPA ein typischer aromatischer Kohlenwasserstoff ist, handelt es sich bei HCD um ein Chinon mit den für diese Verbindungen charakteristischen thermochemischen Eigenschaften. So kann HCD z.B. in alkalischer Dithionitlösung verküpt und in eine wasserlösliche Form umgewandelt werden. Photochemisch verhält es sich jedoch wie ein Anthracenderivat, denn es kann durch Photo-oxidation leicht ein Endoperoxid bilden. Tatsächlich ist das Strukturelement des DPA auch in der Struktur des HCD enthalten, wie das Formelbild (4) demonstriert. Man kann also HCD beziehungsweise dessen Endoperoxid in photochemischer Hinsicht als Derivate des DPA beziehungsweise dessen Endoperoxids betrachten. In diesen Derivaten sind beide Arylsubstituenten jeweils in ortho-Stellung über Carbonylgruppen mit je einer Hälfte des Anthracengerüsts in 1- und in 5-Stellung verbrückt.

Wir haben die Ausbeuten  $A_1$  an Kohlenwasserstoff bei der Thermolyse der Endoperoxide (1) - (3) in siedendem Lösungsmittel unter Ausschluss von Sauerstoff und Licht nochmals bestimmt. Die Werte sind in der Spalte 1 der Tabelle 5 angegeben. Aus den  $A_1$ -Werten berechnen sich die Ausbeuten der thermischen Umlagerungs- und Zersetzungsreaktionen  $A_{dec}$ , die in der Tabelle 5 mit den Quantenausbeuten  $Q_{dec}(S_1)$  der analogen photochemischen Reaktionen bei Einstrahlung in die  $S_1$ -Bande verglichen werden. Es zeigt sich dabei eine erstaunliche Parallelität der Werte.



#### **TABELLE 5**

Ausbeuten  $A_1$  der Spaltung und  $A_{dec}$  der Umlagerung bei der Thermolyse im Vergleich zur Quantenausbeute  $Q_{dec}(S_1)$  der Umlagerung bei der  $S_1$ -Photolyse einiger Endoperoxide

| Verbindung | <i>A</i> <sub>1</sub> | Adec  | $Q_{\text{dec}}(\mathbf{S_1})$ |
|------------|-----------------------|-------|--------------------------------|
| (1)        | 0,995 (Xylol)         | 0,005 | 0,006 (Xylol)                  |
| (2)        | 0.94 (Toluol)         | 0,06  | 0,08 (Toluol)                  |
| (3)        | 0,75 (Xylol)          | 0,25  | 0,20 (Xylol)                   |

Die Parallelität in den Ausbeuten dieser thermischen und photochemischen Reaktionen ist allerdings bei strukturell so ähnlichen Verbindungen nicht ganz unerwartet. Wie Rigaudy *et al.* [5, 15] zeigen konnten, wird nämlich sowohl bei der thermisch als auch bei der photochemisch induzierten Reaktion zunächst die Peroxidbrücke homolytisch gespalten. Das instabile Biradikal (5) kann dann entweder über die Route 1 weiterreagieren oder sich über die Route 2 stabilisieren. Werden durch Variation der Substituenten R über mesomere oder sterische Effekte die Routen 1 und 2 beeinflusst, so ist zu erwarten, dass dies sowohl in der thermischen als auch in der photochemischen Reaktion spürbar wird.

Die Reduktion der Ausbeuten  $A_{dec}$  und  $Q_{dec}(S_1)$  um eine Grössenordnung beim Übergang von (2) zu (1) lässt sich nunmehr leicht verstehen. Sie ist eindeutig auf sterische Effekte zurückzuführen. Zwar sind die Zwischenprodukte (6) und (7) mit  $R \equiv$  Phenyl schon stark gespannte Ringsysteme. Doch wird bei Einführung der Verbrückung der Arylsubstituenten mit dem Anthracengerüst in (1) das Molekulargerüst so versteift, dass eine Ausbildung der Modifikationen (6) und (7) kaum mehr möglich erscheint. Infolgedessen sind die Reaktionswege 1 und 2 weitgehend blockiert und eine Stabilisierung des Biradikals (5) durch Rückreaktion zum Endoperoxid ist wahrscheinlich.



Für ein Konzept zur Synthese eines Endoperoxids mit möglichst kleinem  $Q_{dec}$  stehen damit zwei Kriterien zur Verfügung: (1) wegen der engen Korrelation zwischen  $A_{dec}$  und  $Q_{dec}$  sollte es sich um ein Endoperoxid mit möglichst kleinem  $A_{dec}$  handeln, also um ein Endoperoxid eines 9,10-diarylsubstituierten Anthracens; (2) beide Arylsubstituenten sollen in ortho-Stellung durch Brücken X entweder mit je einer anderen Hälfte des Anthracengerüsts (1,4 Position, (8)) oder mit derselben Hälfte des Anthracengerüsts (1,5 Position, (9)) verbunden sein.

Um unser Konzept zu prüfen, haben wir die Verbindungen BDX (10) und ADC (11), in denen Ätherbrücken die Phenylreste an das Anthracengerüst binden, erstmals hergestellt. Die Ergebnisse unserer Untersuchungen über die Eignung dieser Verbindungen als Komponenten eines hochreversiblen photochromen Systems werden im folgenden präsentiert.





372



#### 3.2. Spektren

BDX und ADC sind in Lösung photo-oxidierbar. Die Elektronenspektren beider Verbindungen und der zugehörigen Endoperoxide (12) und (13) sind in Abb. 1 (BDX) und Abb. 2 (ADC) dargestellt.

Die Maxima der langwelligen Absorptionen von BDX und ADC sind um etwa 145 nm beziehungsweise 165 nm gegenüber dem entsprechenden von DPA rotverschoben. Dies kann durch die Erhöhung der Mesomerie im  $\pi$ -Elektronensystem erklärt werden, die aus der Einebnung des Gesamtmoleküls erfolgt. Weitgehend unbeeinflusst davon bleibt der Extinktionskoeffizient des Maximums, der für beide Isomere etwa so gross ist wie für DPA.

Die Endoperoxide absorbieren erst im UV-bereich. Dabei liegt das Maximum der energieärmsten Absorption für das Endoperoxid (12) von BDX bei 307 nm und für das von ADC (13) bei 323 nm. Die Spektren beider Verbindungen lassen sich widerspruchsfrei mit den angegebenen Strukturformeln vereinbaren\*. Danach verbindet die Peroxidbrücke wie bei den



Abb. 1. Elektronenspektren von BDX (10) und dessen Endoperoxid (12) in Toluol. Abb. 2. Elektronenspektren von ADC (11) und dessen Endoperoxid (13) in Toluol.

<sup>\*</sup>Von einem Referee wurde für (13) alternativ eine Formel vorgeschlagen, bei der die Peroxidbrücke wie im Fall des Endoperoxides von 1,4-Dimethoxy-9,10-diphenylanthracen (DDAPO) die 1,4 Stellung verbindet. Gegen diese Struktur spricht die hohe thermische Stabilität von (13), die in etwa ebensogross ist wie die von (12), aber um den Faktor 1000 grösser als die von DDAPO.



meisten Endoperoxiden von Anthracenderivaten die meso-Positionen [3].

Die Wellenlängendifferenzen  $\Delta\lambda$  zwischen den langwelligen Absorptionsmaxima von Kohlenwasserstoff und zugehörigem Endoperoxid betragen für BDX und für ADC  $\Delta\lambda \approx 235$  nm. Diese ausserordentlich hohen Verschiebungen werden durch die enorme Reduktion der  $\pi$ -Elektronensysteme bei Knüpfung der Peroxidbrücken verursacht.

#### 3.3. Photo-oxidation

Die selbstsensibilisierte Photo-oxidation der Verbindungen BDX und ADC ist ebenso wie die des HCD ein zweistufiger Prozess [16]. Im ersten Schritt wird durch Energieübertragung vom primär angeregten Substratmolekül auf O<sub>2</sub> Singulettsauerstoff O<sub>2</sub>,  ${}^{1}\Delta_{g}$  erzeugt. O<sub>2</sub>,  ${}^{1}\Delta_{g}$  (Lebensdauer in Toluol  $\tau = 24 \,\mu$ s) reagiert dann im zweiten Schritt als Dienophil mit dem Kohlenwasserstoff im Grundzustand in einer 1,4 Cycloaddition zum Endoperoxid. Wegen der Zweistufigkeit der Photo-oxidation und wegen der Bimolekularität der Endoperoxidbildung ist die Quantenausbeute Q<sub>2</sub> der Photo-oxidation eine Funktion der Konzentrationen an Kohlenwasserstoff und O<sub>2</sub>.

Für luftgesättigte toluolische Lösungen, in denen  $[O_2]$  wegen des Austauschs mit der Umgebungsluft als konstant angesehen werden kann, wurde  $Q_2$  als Funktion von [BDX] beziehungsweise [ADC] ermittelt. Eine Analyse dieser Daten ermöglicht die Bestimmung der bimolekularen Geschwindigkeitskonstanten k der Addition von  $O_2$ ,  ${}^{1}\Delta_g$  an den Kohlenwasserstoff [16]. Für BDX wurde  $k = (8,2 \pm 1,5) \times 10^7$  M<sup>-1</sup> s<sup>-1</sup> und für ADC  $k = (4,4 \pm 0,3) \times 10^8$  M<sup>-1</sup> s<sup>-1</sup> erhalten. Damit zeigt BDX etwa die gleiche Reaktivität gegenüber  $O_2$ ,  ${}^{1}\Delta_g$  wie das strukturanaloge HCD ( $k = (7 \pm 0,5) \times 10^7$  M<sup>-1</sup> s<sup>-1</sup>), während das isomere ADC erheblich reaktiver ist.

Die mittleren Quantenausbeuten der Photo-oxidation im Extinktionsbereich von 1,5 bis 0,1 (gemessen in einer 1 cm Küvette jeweils im langwelligen Maximum der Absorption) ergeben sich in luftgesättigtem Toluol für BDX zu  $\bar{Q}_2 \approx 0,04$  und für ADC zu  $\bar{Q}_2 \approx 0,05$ .

#### 3.4. Photospaltung

Einstrahlung in die  $\pi\pi^*$ -Banden beider Endoperoxide verursacht, wie erwartet, eine Spaltung in die Ausgangsverbindungen. Die Quantenausbeute  $Q_1$  wurde bei 313 nm für beide Verbindungen in Toluol ermittelt. Dazu wurde die Bildung an Kohlenwasserstoff spektralphotometrisch verfolgt. Die Umsätze betragen zur Vermeidung des inneren Filtereffekts nur etwa 1%. Für BDX ergab sich  $Q_1 = 0.18$  und für ADC  $Q_1 = 0.13$ .

#### 3.5. Nebenreaktion

Die Photospaltung kann in luftgesättigter Lösung nicht vollständig durchgeführt werden, da sich aufgrund der Photoreversibilität des Systems  $PO \Rightarrow KW + O_2$  ein konzentrationsabhängiges photochemisches Gleichgewicht einstellt. Bei fortgesetztem Bestrahlen kann man spektralphotometrisch nach dem Überschreiten eines Maximums eine kontinuierliche Abnahme der Kohlenwasserstoffkonzentration beobachten. In Abb. 3 ist die zeitliche



Abb. 3. Einstellung des photochemischen Gleichgewichts

(13) 
$$\stackrel{h\nu}{\underset{h\nu}{\longrightarrow}}$$
 ADC + O<sub>2</sub>

 $(\lambda_{irr} = 313 \text{ nm}; \text{Lösungsmittel}, \text{luftgesättigtes Toluol; Anfangskonzentration an (13),} 7,76 \times 10^{-5} \text{ M; eingestrahlter Lichtstrom } I_0 = 1,25 \times 10^{-7} \text{ einstein min}^{-1}; V = 2,5 \text{ ml}.$ 

Änderung an [ADC] während eines solchen Bestrahlungsversuchs graphisch dargestellt. Die Abnahme an [ADC] kann nur mit einer irreversiblen photochemischen Nebenreaktion gedeutet werden. Am Beispiel des HCD konnte gezeigt werden, dass die irreversible Nebenreaktion nicht mit der Photooxidation, sondern mit der Photospaltung konkurriert [9]. Dies stimmt auch mit der allgemeinen Erfahrung überein, dass bei Bestrahlung von Endoperoxiden Umlagerungs- und Zersetzungsprodukte gebildet werden [4]. Wir nehmen daher an, dass auch im Fall der beiden untersuchten photochromen Systeme die photochemische Nebenreaktion vom Endoperoxid ausgeht.

Die Quantenausbeute  $Q_{dec}$  der irreversiblen Nebenreaktion ergibt sich damit zu

$$Q_{\rm dec} = \frac{(\Delta [\rm KW]^G + \Delta [\rm PO]^G)V}{I_{\rm PO}\Delta t}$$
(1)

mit  $\Delta$ [KW]<sup>G</sup> und  $\Delta$ [PO]<sup>G</sup> den Konzentrationsabnahmen an Kohlenwasserstoff und Endoperoxid im photochemischen Gleichgewicht während des Zeitintervalls  $\Delta t$ , V dem Probenvolumen und  $I_{PO}$  dem Lichtstrom in Einstein pro Zeit, der von Endoperoxid absorbiert wird.

Während  $\Delta[KW]^{G}$  direkt dem Konzentrations-Zeit-Diagramm entnommen werden kann (Abb. 3), ist  $\Delta[PO]^{G}$  nur indirekt zugänglich. Eine Extrapolation von [KW] in Abb. 3 auf den Ordinatenabschnitt ergibt [KW]\_{0}^{G}, den Wert für die Gleichgewichtskonzentration an Kohlenwasserstoff zu Beginn der Bestrahlung, wo noch keine Umlagerungs- oder Zersetzungsprodukte entstanden sind. Mit der bekannten Einwaagekonzentration an Endoperoxid [PO]\_0 berechnet sich dann die zu [KW]\_0^G gehörende Konzentration [PO]\_0^G. In einem nicht allzugrossen Konzentrationsbereich von [KW]\_0^G aus gilt näherungsweise für die Gleichgewichtskonzentrationen

$$[PO]^{G} \approx \frac{[PO]_{0}^{G}}{[KW]_{0}^{G}} [KW]^{G}$$
(2)

beziehungsweise für deren Änderungen

$$\Delta[PO]^{G} \approx \frac{[PO]_{0}^{G}}{[KW]_{0}^{G}} \Delta[KW]^{G}$$
(3)

 $I_{\rm PO}$  berechnet sich nach Beziehung (4)

$$I_{\rm PO} = I_0 (1-R)(1-10^{-E_{\rm G}}) \frac{E_{\rm PO}}{E_{\rm G}}$$
(4)

wobei  $I_0$  den auf die Küvette fallenden Lichtstrom, R den Reflexionsverlust von 0,04 beim Lichteintritt in die Küvette,  $E_G$  die gemessene Gesamtextinktion und  $E_{PO}$  die über [PO]<sup>G</sup> berechnete Extinktion des Endoperoxids jeweils bei 313 nm bedeuten.  $E_G$  und  $E_{PO}$  sind dabei Mittelwerte im Zeitintervall  $\Delta t$ .

Die Quantenausbeuten der irreversiblen Nebenreaktion ergeben sich auf diese Weise für das Endoperoxid von BDX zu  $Q_{dec} = 0.01_0$  und für das von ADC zu  $Q_{dec} = 0.009_5$ , innerhalb der Fehlergrenzen von etwa 20% sind beide Werte gleich.

## 3.6. Thermische Stabilität

Beim Erhitzen werden beide Endoperoxide wieder in Ausgangskohlenwasserstoff und O<sub>2</sub> gespalten. Die Thermolyse verläuft in Lösung nach erster Ordnung, wobei sich in Xylol für BDXPO eine Aktivierungsenergie von  $E_a =$ 122,6 kJ mol<sup>-1</sup> und ein A-Faktor von  $A = 3,34 \times 10^{13}$  s<sup>-1</sup> ergeben. Für ADCPO sind die entsprechenden Werte fast identisch mit  $E_a = 122,5$  kJ mol<sup>-1</sup> und  $A = 4,25 \times 10^{13}$  s<sup>-1</sup>. Damit können Halbwertszeiten der thermischen Spaltung von 4 Jahren für das Endoperoxid von BDX und von 3 Jahren für das Endoperoxid von ADC bei 20 °C abgeschätzt werden.

Die Ausbeute  $A_1$  an Ausgangskohlenwasserstoff wurde in siedendem Xylol für beide Endoperoxide zu  $A_1 = 0,99$  ermittelt. Daher beträgt die Ausbeute an Umlagerungs- und Zersetzungsprodukten bei der Thermolyse dieser Verbindungen nur  $A_{dec} = 0,01$  unter diesen Bedingungen.

#### 3.7. Schlussfolgerungen

Die Ähnlichkeit von Ausbeuten an Umlagerungs- und Zersetzungsprodukten bei der Thermolyse  $A_{dec}$  und bei der Photolyse  $Q_{dec}$  konnte auch für die beiden neuen Endoperoxide bestätigt werden. Sie beruht darauf, dass im Primärschritt der thermischen und der photochemischen Umlagerungsreaktion durch homolytische Spaltung der Peroxidbrücke das gleiche Biradikal gebildet wird [9, 15]. Die Frage, ob dieses Biradikal auch auf dem gleichen Weg gebildet wird, d.h. ob die photochemische Umlagerung vielleicht aus einem heissen Grundzustand erfolgt, kann aber nicht beantwortet werden.

Mit der Synthese der beiden Endoperoxide konnte unser Konzept für ein photochromes System mit möglichst kleiner Quantenausbeute der Nebenreaktion  $Q_{dec}$  bestätigt werden. Die Versteifung des Molekülgerüsts durch Ätherbrücken senkt den Wert für  $Q_{dec}$  um etwa eine Grössenordnung im Vergleich zum Endoperoxid des DPA. Dabei ist es offensichtlich unbedeutend, ob die Verbrückung der Arvlsubstituenten jeweils mit derselben Hälfte (ADC) oder mit gegenüberliegenden Hälften (BDX) des Anthracengerüsts erfolgt. Dass die Werte für  $Q_{dec}$  für die neuen Endoperoxide noch etwa doppelt so hoch sind, wie für das Endoperoxid von HCD könnte ein Hinweis darauf sein, dass auch die "Natur" der Brücke die Grösse von  $Q_{dec}$ bestimmt. Danach wäre -CO- eine stabilere Brücke als -O-.

Die Quantenausbeuten  $Q_1$  sind für beide Endoperoxide etwas kleiner als für die Endoperoxide von HCD und DPA, aber noch um eine Grössenordnung grösser als für das Endoperoxid von RUB. Mit den Verhältnissen von  $Q_1/Q_{dec}$  = 18 für das Endoperoxid von BDX und  $Q_1/Q_{dec}$  = 13 für das von ADC stellen diese Systeme

$$PO \Rightarrow KW + O_2$$

dennoch hochreversible photochrome Systeme dar. So lässt sich mit Beziehung(5)[8]

$$n \approx Q_1 / Q_{\rm dec} U \tag{5}$$

für das System (12)  $\rightleftharpoons$  BDX + O<sub>2</sub> eine Zyklenzahl von  $n \approx 350$  und für das System (13)  $\Rightarrow$  ADC + O<sub>2</sub> von  $n \approx 250$  abschätzen. Dabei ist angenommen, dass bei jedem photochromen Zyklus Endoperoxid bis zu einem Umsatz von U = 0.05 photolysiert wird und dass anschliessend der Kohlenwasserstoff durch Photo-oxidation wieder vollständig in Endoperoxid umgewandelt wird. Nach n Zyklen ist dann die Konzentration an Endoperoxid auf ein e-tel der Ausgangskonzentration gesunken.

Die Qualität der neuen photochromen Systeme, die nach dem in dieser Arbeit skizzierten Strukturprinzip aufgebaut sind, begründet sich aber nicht nur auf ihrer hohen Reversibilität. Hervorzuheben sind daneben die aussergewöhnlich hohe thermische Stabilität sowie die grossen Wellenlängendifferenzen  $\Delta\lambda$  zwischen den langwelligen Absorptionsmaxima von Endoperoxid und Kohlenwasserstoff. Auch die mittleren Quantenausbeuten  $Q_2$  der Entfärbung durch Photo-oxidation sind ausreichend gross. Jedoch muss als nachteilig gewertet werden, dass  $Q_2$  eine Funktion von [KW] ist.

Ob die Reversibilität der bisher bekannten photochromen Systeme  $PO \Rightarrow KW + O_2$  weiter gesteigert werden kann, hängt wohl von zwei Faktoren ab: (1) ob eine noch stabilere Brückengruppe gefunden werden kann und (2) ob es möglich ist, Endoperoxide mit deutlich höheren Quantenausbeuten  $Q_1$  gezielt herzustellen. Wir werden versuchen, weitere Systeme nach dem vorliegenden Konzept zu synthetisieren, um diese Frage zu klären.

#### Dank

Wir bedanken uns bei der Hoechst AG. für die Überlassung der chlorierten Anthrachinone.

## Literatur

- 1 C. Dufraisse, Bull. Soc. Chim. Fr., 6 (1939) 422.
- 2 A. Schönberg, Präparative organische Photochemie, Springer, Berlin, 1958.
- 3 K. Gollnick und G. O. Schenck, in J. Hamer (Hrsg.), 1,4-Cycloaddition Reactions, Academic Press, London, 1967.
- 4 W. Adam, Angew. Chem., 86 (1974) 683.
- 5 J. Rigaudy, C. Breliere und P. Scribe, Tetrahedron Lett., (7) (1978) 687.
- 6 A. Viallet, J. Rouger, H. Cheradame und A. Gandini, J. Photochem., 11 (1979) 129.
- 7 R. Srinivasan, K. H. Brown, J. A. Ors, L. S. White und W. Adam, J. Am. Chem. Soc., 101 (1979) 7424.
- 8 H.-D. Brauer, W. Drews und R. Schmidt, J. Photochem., 12 (1980) 293.
- 9 R. Schmidt, W. Drews und H.-D. Brauer, J. Am. Chem. Soc., 102 (1980) 2791.
- 10 W. Drews, R. Schmidt und H.-D. Brauer, Chem. Phys. Lett., 70 (1980) 84.
- 11 R. Schmidt und H.-D. Brauer, J. Photochem., 15 (1981) 85.
- 12 E. Fischer, Chem. Unserer Zeit, 9 (1975) 85.
- 13 E. Clar, W. Kelly, G. Stewart und J. W. Wright, J. Chem. Soc., (1956) 2656.
- 14 W. Drews, R. Schmidt und H.-D. Brauer, J. Photochem., 6 (1977) 391.
- 15 J. Rigaudy, J. Baranne-Lafont, A. Defoin und N. K. Cuong, Tetrahedron, 34 (1978) 73.
- 16 H.-D. Brauer und H. Wagener, Ber. Bunsenges. Phys. Chem., 79 (1975) 597.